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Abstract. Differential Dynamic Microscopy (DDM) analyzes traditional real-space microscope images to
extract information on sample dynamics in a way akin to light scattering, by decomposing each image in
a sequence into Fourier modes, and evaluating their time correlation properties. DDM has been applied in
a number of soft-matter and colloidal systems. However, objects observed to move out of the microscope’s
captured field of view, intersecting the edges of the acquired images, can introduce spurious but significant
errors in the subsequent analysis. Here we show that application of a spatial windowing filter to images in a
sequence before they enter the standard DDM analysis can reduce these artifacts substantially. Moreover,
windowing can increase significantly the accessible range of wave vectors probed by DDM, and may further
yield unexpected information, such as the size polydispersity of a colloidal suspension.

1 Introduction

Differential Dynamic Microscopy (DDM) uses Fourier
analysis of microscope image sequences to characterize the
structure and dynamics of a wide variety of physical and
biological systems [1], including dilute isotropic [2,3] and
anisotropic [4,5] colloidal particles, dense colloidal suspen-
sions [6–8], molecular [9] and complex [10,11] fluids, motile
microorganisms [6,12,13], and sub-cellular structures [14,
15]. This broad adoption of DDM stems from its numer-
ous advantages [16], including simple implementation with
ordinary microscopy, no need for custom instrumentation,
insensitivity to normal amounts of dirt or multiple scat-
tering, and an ability to focus on regions of interest in
images collected with a variety of image-contrast mecha-
nisms: bright field [2], dark field [3], phase contrast [12],
wide field fluorescence [17], polarized [5,11], differential
interference contrast [14], light sheet [18] and confocal mi-
croscopy (ConDDM) [6–8].

Theoretically, DDM probes a range of wave vectors
q that is determined by two factors: the lower bound
qmin,th = 2π/L is constrained by the image size L, while
the upper bound qmax,th = π/a is controlled by the pixel
size a. In real experiments, the practical range [qmin, qmax]
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for which the statics and the dynamics can be measured
reliably is often more limited. Limitations can arise from
both the statics (e.g., the signal to noise ratio is too low)
and the dynamics (e.g., the observation time window is
too short to adequately sample the dynamics associated
with the slowest modes, or the temporal resolution is too
poor to capture the faster dynamics, typically associated
with the smaller length scales). Other relevant practical
limitations may result from mechanical drifts, vibrations
or advective/convective flows driven by thermal inhomo-
geneities or pressure imbalance. We note that most of
these limitations are by no means unique to DDM, as
other methods (e.g., particle tracking) are also affected
for instance by a poor temporal resolution, vibrations and
mechanical/convective drifts.

An additional limitation constraining the range of
probed wave vectors arises from the fact that, in any se-
quence of images with finite size, particles crossing the
edge of the image boundary will be imaged only partially.
Thus, the images contain particles with straight, sharp
edges that, as is well known in signal processing the-
ory [19], create significant artifacts in the static Fourier
spectrum. This effect is particularly pronounced in sys-
tems with limited spatial bandwidth, as is common in mi-
croscope images due to the resolution constraints imposed
by the diffraction limit. Although, thus far, this problem
has been given little attention, it nonetheless leads to spu-
rious artifacts in the Fourier transforms of the images,
thereby potentially affecting also the DDM results for the
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sample dynamics, though the specific effects have not yet
been established.

In this paper, we combine theory and experiments to
show that the partial imaging of particles at the bound-
ary, inevitable for all images of finite size, introduces sig-
nificant artifacts, namely a spurious, nearly-q-independent
secondary decay in the DDM image structure functions.
This decay, present in principle for all q, dominates the
dynamics at the largest q values, where the signal associ-
ated with particle dynamics vanishes due to the particle
form factor P (q). We mitigate this artifact with a sim-
ple preprocessing step: spatial windowing (apodization) of
the images, which does not increase substantially compu-
tational complexity, yet increases significantly qmax. The
expansion of the accessible range of q values not only im-
proves the accuracy of DDM in general, but also opens
up new analyses in specific cases; for example, we show
how windowing may enable the estimation of size polydis-
persity in a colloidal suspension using a method common
in Dynamic Light Scattering (DLS) experiments [20,21].
Remarkably, we show that this artifact also arises with
molecular fluids, as a consequence of the limits imposed
by diffraction on the detection of sub-wavelength entities.

2 Boundary effects in dynamic microscopy

A detailed description of the image processing algorithm
on which DDM is based can be found in refs. [22,2,23,
16]. In brief, a sequence of N digital images I(x, t) is ac-
quired, where x = a0 (nx, ny) and t = n∆t0. Here a0 is
the effective pixel size (the physical pixel size divided by
the objective magnification), nx, ny are integer numbers
comprised between 1 and the image size M (assumed to
be the same for both dimensions) and ∆t0 is the time
interval between two consecutive images. The key quan-
tity from which the dynamical information is extracted is
the so-called image structure function D(q,∆t), that is
calculated as

D(q,∆t) =
〈

|FFT [I(x, t0 + ∆t) − I(x, t0)]|
2
〉

, (1)

where FFT indicates the Fast Fourier Transform opera-
tion and q = q0 (mx,my), with mx, my integers comprised

between −(M
2

− 1) and M
2

. q0 = 2π
Ma0

. The expectation

value 〈·〉 is taken over time and, possibly, over different
replicas of the same experiment.

For a linear space-invariant imaging process, the image
structure function takes the form [23]

D(q,∆t) = A(q) [1 − f(q,∆t)] + B(q), (2)

where A(q) is an amplitude term that depends on the spa-
tial intensity correlations present in the images and B(q)
accounts for the noise of the detection chain. The func-
tion f(q,∆t) = f2D(q,∆t)fz(q,∆t) is defined in terms
of a transverse part f2D encoding dynamics in the im-
age plane and an axial contribution fz, which accounts
for dynamics in the axial direction. In most cases of in-
terest, such as for instance when the axial dynamics can

be neglected or when small wave vectors are of interest,
f(q,∆t) coincides with the normalized intermediate scat-
tering function probed by DLS [24,16].

Starting from eq. (2), the usual strategy in DDM ex-
periments is based on

1) assuming a suitable functional form describing the
time dependence of f(q,∆t);

2) fitting the image structure function D(q,∆t) to esti-
mate the q-dependent parameters describing the relax-
ation of the different Fourier modes;

3) collecting together the results obtained at different q
to extract the relevant quantity characterizing the dy-
namics and the statics of the sample.

For example, for a dispersion of dilute, non-interacting
Brownian particles, the expected intermediate scattering
function is f(q,∆t) = exp(−Γ (q)∆t). The fitting proce-
dure provides an estimate of Γ (q), whose expected scaling
with q is Γ (q) = Dtq

2, where Dt is the translational dif-
fusion coefficient of the particles. The best estimate for
Dt is then obtained by a fit of Γ (q). In this particular
case, no structural correlations are expected, which means
that the estimate for A(q) provided by the fitting proce-
dure provides information about the form factor P (q) of
the particles and the transfer function T (q) of the optical
setup [23]. In other cases, additional information about
the structural correlations within the sample can be ex-
tracted [6,10,11].

Further insight can be obtained by making explicit the
relationship between the sampled intensity I(x, t) on the
detector and the actual intensity i(x, t) in the image plane
as

I(x, t) = W0(x) [i(x, t) + b(x, t)] , (3)

which is helpful to account for finite sampling effects. Here,
W0(x) is a window function that takes value 1 within the
image boundaries and 0 outside and b is a detection noise
term that we assume to be delta-correlated both in space
and time.

In the following, we will focus on the case of a collec-
tion of Np identical particles, whose positions are labeled
by the coordinates (xn, zn)n=1,2,...,Np

. For a linear, space-
invariant imaging process [23], we obtain

i(x, t) = i0 +
∑

n

ψ (x − xn(t), zn(t)) , (4)

where i0 is the average intensity in the absence of the
particles and ψ represents the intensity distribution asso-
ciated with a single particle. In general, ψ is the result of
the 2D convolution of the spatial distribution of the rele-
vant optical parameter within the particle (e.g., refractive
index in the case of bright-field or dye density in the case of
florescence microscopy) with the three-dimensional point-
spread function of the microscope [23]. By introducing the
spatial 2D Fourier transform of the function g(x):

ĝ(q) =

∫ +∞

−∞

dx

∫ +∞

−∞

dyg(x)e−jq·x (5)
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Fig. 1. Spectral leakage in DDM. A particle crossing image boundaries (top row) excites high-q wave vectors in the reconstructed
Fourier spectrum (bottom row) along the direction perpendicular to the image boundary. Consequently, the characteristic
dynamics associated with these events produce strong effects at large q. All images are simulated and represented using the
same settings (image size: N = 256 pixels, effective particle radius: σP = 10 pixels), and Fourier spectra are represented on a
logarithmic scale with the same color code. The size bar for real-space images shown in panel (a) corresponds to 100 pixels,
while the size bar for Fourier-space images shown in panel (e) corresponds to 2π/σP . A dynamic version of this figure is also
available as supplementary movie M1.

we obtain after some manipulation the following expres-
sions for the intermediate scattering function f(q,∆t) and
the amplitude A(q):

A(q) = 2ÑpP (q) (6)

and

f(q,∆t) =
|Ŵ0(q)|2 ∗ [f∞(q,∆t)P∞(q)]

P (q)
, (7)

where Ñp is the average number of particles within the
image and where we have defined the form factor

P (q) = |Ŵ0(q)|2 ∗ P∞(q) (8)

and its limit for infinitely large samples

P∞(q) = 〈|ψ̂ (q, z) |2〉. (9)

The noise term B(q) is expected to be q independent
and proportional to 〈b2〉. These equations describe how the
statical and dynamical properties of particles, when recon-
structed from the FFT analysis of the images, are affected
by the presence of the boundaries and may differ from the
ones calculated for an infinitely extended image, i.e. when
Ŵ0(q) ≃ δ(q). In fact, only in the latter case the interme-
diate scattering function is given by f(q,∆t) = f∞(q,∆t).
In all other cases, a mixing between different Fourier com-
ponents occurs, which for the static amplitude is known
as spectral leakage in the signal processing literature [25].

To have a physical intuition of why spectral leakage
also affects the dynamics, one can consider fig. 1, where

simulated real-space images of a spherical particle in dif-
ferent positions (a)–(d) are compared with the correspond-
ing FFT spectra (e)–(h). As far as the particle is well
within the image area, the FFT spectrum does not de-
pend on the particle position and it closely mirrors the
effective shape factor P (q). When the particle reaches the
image boundary, instead (panel 1(c)), a spurious signal
is generated, which affects in particular the largest wave
vectors, where the amplitude of the “bulk” signal is lower.
This extra contribution appears as a “band” localized
around the axis and perpendicular to the image bound-
ary, whose amplitude reach a maximum when the particle
is cut in half by the image boundary (panel 1(d)). If one
thinks of the particle displacement as a dynamical process,
the temporal persistence of this extra contribution corre-
sponds to the time needed for the particle to completely
cross the boundary (see also supplementary movie M1).
In the case of a Brownian particle, this characteristic time
can be estimated as τP ≈ σ2

P /Dt, where Dt is the parti-
cle diffusion coefficient and σP is the width of its effective
shape, which is the largest number between the particle
size and the size of the microscope point-spread function.
If a large number of particles is imaged, the boundary con-
tribution is expected to be always present and to fluctuate
with the same characteristic correlation time τP .

To quantitatively assess this effect, we performed a
direct numerical integration of eq. (7) for the case of a
collection of independent Brownian particles. The shape
of the particles is described by a Gaussian profile (with
standard deviation σP ) and the window function W0 is
chosen as the characteristic function of a square with side
length N . We assume that the axial dynamics can be ne-
glected, i.e. that f(q,∆t) ≃ f2D(q,∆t) = exp(−Dtq

2∆t).
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Fig. 2. Results obtained by numerical integration of eq. (7) in the case of Brownian particles with Gaussian effective shape with
standard deviation σP = 0.05N (dotted profile in panels (a) and (d)). The image size is assumed to be N pixels. In the absence
of explicit windowing, the window function coincides with the characteristic function of the image area (continuous line in panel
(a)). In panel (b) the corresponding normalized intermediate scattering functions for different qs in the range 0.1σ−1

P
< q < 4σ−1

P

are shown as a function of the dimensionless time delay ∆t/τP , where τP = σ2

P /Dt is the characteristic self-diffusion time of the
particle (see main text for details). For large q, the curves converge to a q-independent decay. Such deviation from the expected
exponential behavior f(q, ∆t) = exp(−Dtq

2∆t) is made evident in panel (c), where the same curves are plotted as a function
of the rescaled time ∆tDtq

2. The application of a smooth window function (continuous curve in panel (d), see also eq. (10))
substantially reduces the spurious effects on the dynamics, as shown in panels (e), (f) where the corresponding normalized
intermediate scattering functions are shown for the same q values considered in panels (b), (c). The collapse in panel (f) means
that all of the intermediate scattering functions have the same functional form, the exponential decay.

As a consequence of the spectral leakage, we find that
for q > 1/σP the intermediate scattering functions are
no longer described by a simple exponential function and
tend to decay with a q-independent characteristic time
τP ≈ σ2

P /Dt (fig. 2(b)).
Our simulations indicate that these dynamic artifacts

can be avoided if one employs the same windowing proce-
dure that is popular in the signal processing community
for the removal of spurious static signal correlations [19,
25]. Windowing consists in multiplying the data, before
performing the FFT operation, by a window function,
usually a symmetric, bell-shaped profile that smoothly
goes to zero at both ends of the sampling interval. In this
way, the virtual periodic signal that the FFT algorithm
produces by combining an infinite collection of replicas
of the original image is no longer discontinuous at the
boundaries between tiles. In our case, we find that spa-
tial windowing (fig. 2(d)) has a dramatic effect on the
reconstructed dynamics (fig. 2(e), (f)): all the interme-
diate scattering functions that were previously shown to
be corrupted by finite-size artifacts, now display a clean
exponential relaxation with the expected relaxation rate
Γ (q) = Dtq

2.
The spatial window function chosen in the numerical

calculations above and also used in the rest of this article

is a Blackman-Harris window function WBN (x)WBN (y),
a generalized cosine window function whose 1D version
reads [25]:

WBN (x) =

3
∑

j=0

(−1)jaj cos

(

2πjx

L

)

, (10)

where the values of the aj parameters are fixed. More
specifically, they are a0 = 0.3635819, a1 = 0.4891775,
a2 = 0.1365995, a3 = 0.0106411 [25]. Both for simulations
and experiments, we have also tested other options for
the window function, in particular the Hann and Dolph-
Chebyshev windowing functions [25]. In both cases, we
obtained results equivalent to those obtained with the
Blackman-Harris function. We will further comment on
this issue in the next Section.

3 Spatial windowing in dynamic microscopy

experiments

To assess the validity of the proposed approach in real
experiments, we evaluate in this section the effect of spa-
tial windowing on experimental data acquired with bright-
field and confocal microscopy. We will show that spatial
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Fig. 3. (a) Representative raw confocal image of a semi-diluted suspension of hard-sphere colloidal particles (see main text
for details). (b) 2D image structure function D(q, ∆t) for ∆t ≃ 20 s, showing the characteristic “bands” along the axes due to
spectral leakage. In addition, some bright cross-hairs/dots are also visible that are due to the scanning disk acquisition. The data
that correspond to these cross-hairs/dots are excluded from the DDM analysis. (c) Azimuthally averaged intermediate scattering
functions as a function of the time delay ∆t for different values of the wave vectors q in the range 2 µm−1 < q < 15 µm−1. (d)
Same as in panel (c), but as a function of the rescaled time delay ∆tDtq

2. The fact that, at large q, the curves fail to collapse
indicates that the spurious dynamics becomes dominant. (e) Same image shown in panel (a) after spatial windowing with a
Blackman-Harris window function (eq. (10)). (f) 2D image structure function for ∆t ≃ 20 s as obtained from the windowed image
sequence, showing a nice azimuthal symmetry and no bands. The azimuthally-averaged intermediate scattering functions are
plotted as a function of the time delay ∆t in panel (g) and of the rescaled time delay ∆tDtq

2 in panel (h), for the same q-values
considered in panels (c), (d). After windowing, the intermediate scattering functions do not show any significant deviation from
a purely exponential relaxation with diffusive scaling of the relaxation rate Γ (q) = Dtq

2.

windowing of the images before performing the standard
DDM analysis drastically reduces the impact of boundary-
related artifacts on both the statics and the dynamics.
To focus on the dynamics, we will show in the follow-
ing experimental results obtained with and without win-
dowing for the intermediate scattering function f(q,∆t).
Such estimate is obtained by assuming a functional form
for f(q,∆t) and fitting the D(q,∆t) experimental data
to eq. (2). Such fit, performed with a custom MATLAB
routine, provides also estimates for A(q) and B(q).

3.1 Confocal microscopy

The sample is a semi-diluted (0.04 volume fraction) sus-
pension of sterically stabilized polymethylmethacrylate
(PMMA) 0.5µm fluorescent particles in a density– and
refractive-index–matching solvent [6]. The suspension is
imaged by a confocal microscope equipped with a Nipkow
disk (Yokogawa), a CCD camera (QIimaging), a 100X oil
immersion objective (Leica), and a solid-state laser source
(Laserglow). Image sequences of a single plane from a
depth of 20µm from the lower coverslip are acquired at
a frame rate 1/∆t0 = 33.9 fr/s. Image size is 256 × 256
pixels, with an effective pixel size of 127 nm.

A representative image of the suspension is shown in
fig. 3(a). The corresponding two-dimensional image struc-
ture function for a large time delay ∆t = 20 s (fig. 3(b))

shows marked artifacts, mainly localized along the hor-
izontal and the vertical axis, that are due to spectral
leakage. The impact on the dynamics of the edge-effects
can be well appreciated from fig. 3(c), (d), where the in-
termediate scattering functions obtained from the DDM
analysis are shown for different values of q in the range
2µm−1 < q < 15µm−1. Some of the curves appear non-
exponential when plotted as a function of the time delay
∆t (panel c) and do not collapse on a unique master curve
when plotted as a function of ∆tDtq

2 (panel d).

The effectiveness of windowing in amending these ef-
fects can be appreciated in fig. 3(e)–(h). A representa-
tive 2D structure function obtained for the time delay
∆t = 20 s by analyzing windowed images such as the one
in fig. 3(e) is shown in fig. 3(f). It is evident that the ex-
pected azimuthal symmetry is recovered. In addition, the
temporal dependence of the intermediate scattering func-
tions at different q now exhibits the expected exponential
decay, with a rate Γ (q) ≃ Dtq

2 (fig. 3(g), (h)).

To better compare the results of the standard DDM
analysis with those obtained by prior windowing of the
images, we show in fig. 4 the relaxation rate Γ (q) obtained
by fitting the intermediate scattering functions in fig. 3(c)

and (g) with the model f(q,∆t) = e−Γ (q)∆t

√
1+γ∆t

. In this expres-

sion, obtained by assuming an isotropic diffusive dynamics
and a Gaussian-Lorentzian model for the confocal point-
spread function [16,6], the denominator accounts for the
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Fig. 4. q-dependent correlation rate Γ (q) obtained from the
fit of the intermediate scattering function with and without
(orange circles) spatial windowing in a confocal microscopy
experiment on a semi-diluted suspension of ≃ 500 nm col-
loidal particles (see text for details). Different symbols cor-
respond to different choices of the window functions (blue
square: Blackman-Harris, green diamonds: Hann, purple dots:
Dolph-Chebyshev with sidelobe attenuation equal to −100 dB).
The vertical dashed line is drawn in correspondence of the
position of the calculated first minimum of the shape factor
q∗ ≃ 4.4934/R, where R is the particle’s radius. The gray
area indicates the wave vector range q > 4πNA/λ ≃ 24 µm−1

falling below the diffraction limit.

axial dynamics and the q-independent rate γ is the one
associated with the diffusion across the confocal optical
section [16,6]. If we focus only on the horizontal dynam-
ics, the obtained values for Γ (q), both in the absence and
in the presence of windowing, are compared in fig. 4. In the
absence of windowing, a systematic deviation from the ex-
pected scaling Γ (q) = Dtq

2 is observed for q > 8.5µm−1,
where a sudden drop is observed. On the contrary, win-
dowing allows the reliable reconstruction of the dynamics
up to q ≃ 16µm−1, a limit determined only by the ac-
quisition frame rate that inhibits the access to timescales
shorter that about ∆t0. Remarkably, the three windowing
functions that we tested give very similar results.

Interestingly, the increased wave vector range made
available by the windowing procedure is such that a min-
imum in the static amplitude is now visible for q∗ ≃
10.5µm−1. This minimum, corresponding to the dark ring
around the central lobe of the Fourier spectrum in fig. 3(f),
may be attributed to a zero in the particle’s form factor.
For a sphere of radius R∗ the first zero in the from factor is
expected to occur for q∗ = 4.4934/R∗ [20], which provides
the estimate R∗ = 4.4934/q∗ ≃ 0.44µm for our particles.
This value is smaller than the one obtained with the same
particles in a previous study [6], where a series of mea-
surements were performed for different volume fractions
in the range 0.005 < φ < 0.4. In ref. [6], by measuring the
diffusion coefficient in a very dilute sample the estimate

RH = 0.505µm was obtained for the particle’s hydrody-
namic radius. This value was also found to be in good
agreement with the size obtained from the Percus-Yevick
fit of the static structure factors of the hard spheres. The
observed difference may be attributed to the known fact
that for these particles the optical signal is generated by
the emission of a fluorescent dye that is physically trapped
within the particle itself, in a region that is smaller than
the physical size of the particle [8]. For this reason, R∗

provides an estimate of the size of the fluorescent portion
of the particle.

The improved visibility of the minimum in the static
amplitude is accompanied by its dynamical counterpart,
which brings in additional physics. Careful inspection of
the behavior of Γ (q) in the vicinity of q∗ (fig. 5(a)) reveals
the presence of a characteristic swing on top of the aver-
age diffusive scaling Dtq

2, consisting in a slight speed up
of the dynamics for q < q∗, followed by a slowing down
for q > q∗. This effect has been predicted and observed
in the context of dynamic light scattering and can be as-
cribed to the polydispersity of the particles [20,21]. The
normalized fluctuation D0q

2/Γ (q) is well fitted to the ex-
pression given in eq. (33) in ref. [20] from which a polydis-
persity σ of about 10% can be estimated (fig. 5(c)). This
value is larger than the expected particle batch polydis-
persity, which in our case is estimated to be of the order
of 5%. This discrepancy is not surprising because of the
non-uniform internal distribution of the dye in our parti-
cles [8].

We note that, although windowing increases the acces-
sible wave vector range, this comes at the expenses of the
overall signal. As a matter of fact, the application of a win-
dow function suppresses a fraction of the intensity in the
image, causing a decrease in the measured amplitude A(q)
(of about 85%, 75% and 85% for the Blackmann-Harris,
Hann and Dolph-Chebyshev functions, respectively), as
shown in fig. 5(b).

3.2 Bright-field microscopy

To test the generality of the proposed approach with re-
spect to the imaging contrast mechanism, we applied the
same procedure described in the previous paragraph to
data obtained with bright-field microscopy. We used two
samples: a very diluted suspension of colloidal particles
and a binary mixture close to its critical consolution point.

Colloidal suspension

We chose a suspension of monodisperse polystyrene col-
loidal particles of nominal radius R = 230 ± 10 nm and
volume fraction φ ≃ 0.0014 in a dispersing medium made
of water (51.2%w/w) and glycerol. Bright-field images
are collected with a water immersion objective (40X,
NA = 1.15) mounted on an inverted microscope (Nikon
Eclipse). The microscope is equipped with a fast CMOS
camera (Hamamatsu ORCA Flash4 V2, effective pixel size
0.163µm). Sequences of images were acquired with frame
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Fig. 5. (a) q-dependent decorrelation rates Γ (q) obtained from
the fit of the intermediate scattering function, with and with-
out (orange circles) spatial windowing using the window func-
tions (blue square: Blackman-Harris, green diamonds: Hann,
purple dots: Dolph-Chebyshev with sidelobe attenuation equal
to −100 dB) in a confocal microscopy experiment on a semi-
diluted colloidal suspension (see text for details). The continu-
ous line is the best-fit curve to the data with a quadratic func-
tion; the vertical dotted line, drawn for q = 8.5 µm−1, marks
where the curve Γ (q), obtained without windowing, starts de-
viating significantly from the expected scaling. (b) Amplitude
A(q) obtained from the fit of the intermediate scattering func-
tion. Symbols are as in (a). In the presence of windowing, the
amplitude is reduced by about 75% (Hann) and 85% (Dolph-
Chebyshev and Blackmann-Harris) (c) Ratio between the ef-
fective, q-dependent diffusion coefficient Dt(q) = Γ (q)/q2 and
its mean value D0 (symbols as in (a)); the continuous line is a
best fit of the data to eq. (33) in ref. [20]. The inflection point
in D0/Dt(q) occurs for q∗ = 10.5 µm−1, in very good agree-
ment with the position of the first minimum in A(q) (vertical
dashed line in all panels).
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Fig. 6. q-dependent correlation rates Γ (q) obtained from the
fit of the intermediate scattering function with and without
(orange circles) spatial windowing for the two bright-field mi-
croscopy experiments described in the main text: (a) a diluted
suspension of ≃ 230 nm polystyrene particles and (b) a critical
binary mixture close to its consolution point. In both panels,
different symbols correspond to different choices of the win-
dow functions (blue square: Blackman-Harris; green diamonds:
Hann; purple dots: Dolph-Chebyshev with sidelobe attenuation
equal to −100 dB), while the gray area indicates the wave vec-
tor range q > 2πNA/λ falling below the diffraction limit.

rate 1/∆t0 = 777 s−1. DDM analysis was performed both
on temporal sequences of raw images and of windowed
images.

Fitting the temporal dependence of the azimuthally-
averaged image structure functions D(q,∆t) with a sim-
ple exponential decay provides the q-dependent relaxation
rates Γ (q) shown in fig. 6(a). Fitting of the data for
q ≪ 9µm−1 with Γ (q) = Dtq

2 provides the estimate
Dt = 0.208±0.005µm−1. For q > 9µm−1, we observe that
the results obtained without windowing deviate system-
atically from the expected diffusive scaling Γ (q) = Dtq

2.
Such deviation is due to the increasing relevance of the
spurious, q-independent dynamics of the particles that dif-
fuse in and out of the region of interest across its edges.
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The characteristic rate of the latter process can be roughly
estimated as τ−1

P ≃ Dt/σ2
P ≃ 3 s−1, which is compatible

with the saturation trend observed for the largest q in
fig. 6(a). We note that for the previous estimate we have
used σP ≃ λ/(2NA) ≃ 0.26µm, our particle size being
close to the diffraction limit.

On the contrary, the analysis of the windowed sequence
provides consistent results up to q ≃ 14µm−1, this limit
being only set by the signal-to-noise ratio. Indeed, the
amplitude A(q) is about 400 times smaller than the noise
B(q) for q ≃ 14µm−1. The reliable extraction of quanti-
tative static and dynamic information under this rather
unfavorable signal-to-noise ratio is made possible by the
use of windowing, which rejects efficiently the finite image-
size artifacts. Without windowing the dynamics becomes
corrupted as soon as the amplitude of signal falls below the
noise level, as spectral leakage effects dominate the signal.

Molecular liquid

Thermally-excited concentration fluctuations in a binary
mixture are difficult to probe with visible light, mostly
because their amplitude is usually very small. A notable
exception is represented by the case of a mixture that
is brought close to a critical point, condition in which
the concentration fluctuations develop long-range correla-
tions that make both their amplitude and their correlation
length incredibly large. Despite its dramatic increase close
to a critical point, in typical experimental conditions the
correlation length always remains well below the optical
resolution, providing us with the ideal sample for assess-
ing the validity of image windowing in sample where the
intensity fluctuations are originated by small-size density
fluctuations.

To this aim, we have analyzed bright-field movies
(Nikon Ti-U, Hamamatsu ORCA-Flash4.0, 2× 2 binning,
20× magnification, 50000 images, 128 × 128 pixels, 200
fps). We show in fig. 6(b) results obtained at a tempera-
ture T = 0.1 ◦C above the critical temperature Tc ≃ 30 ◦C
in a mixture aniline-cyclohexane prepared at the criti-
cal composition (aniline concentration cc = 0.47w/w) [9].
Without windowing (circles), the relaxation rate exhibits
a sudden decrease of the experimental relaxation rate that
is likely due to the edge-effects described in this work. This
is confirmed by application of the windowing procedure,
which is found to effectively remove this artifact, with no
substantial differences between the three windowing func-
tions tested (squares, diamonds and dots in fig. 6(b)).

The fact that edge-related artifacts arise also when
the individual scattering objects are molecules should not
surprise because, as also described in sect. 2, the charac-
teristic length-scale of the problem is the largest quantity
between the particle size and the optical resolution width
of the microscope. This distinction can be appreciated by
inspecting figs. 4 and 6: when the individual scattering
entities are large (fig. 4), the edge-induced artifact oc-
curs for q ≃ q∗, whereas when they are small (fig. 6), the
onset of the edge effects is set by the resolution width
2πNA/λ.

As a consequence, we expect that the observed effect
should be present also in off-critical samples, provided
that the amplitude of concentration fluctuations is large
enough to generate a detectable signal.

4 Conclusion

We have demonstrated that, in a DDM experiment, par-
ticles crossing the boundaries of the images limit and dis-
tort the genuine dynamics at high-q. Notably, this hap-
pens also when the intensity fluctuations in the microscope
images are originated by density fluctuations in molecu-
lar fluids. The associated q-independent dynamic signal
leads to a spurious suppression of the relaxation rates
measured at large q. This peculiar feature appears in sev-
eral DDM-related investigations (e.g., in refs. [4,18,26]),
and has thus far not yet been explicitly discussed, nor
its origin investigated or explained. In response, we pro-
pose a simple solution —applying a smooth window func-
tion to the images before the standard Fourier processing,
which despite its conceptual and computational simplic-
ity, significantly enhances the DDM analysis and extends
the q-range over which meaningful, reliable estimates of
the statics and of the dynamics are obtained. However,
our solution may have some potential limitations. For ex-
ample, we have observed (see for example fig. 5(b)) that
image windowing by using the Blackmann-Harris function
causes an overall decrease in signal of about 85%. Simi-
larly, the decrease amounts to 75% and 85% for the Hann
and Dolph-Chebyshev functions, respectively. Also, a “line
broadening” effect is observed as a consequence of the fact
that multiplication with the window function in real space
leads to convolution with its Fourier transform in the re-
ciprocal domain [19]. In general, we expect that both in-
tensity loss and broadening will not lead to serious con-
sequences in most practical cases, because both the static
amplitude A(q) and the intermediate scattering function
f(q,∆t) are smooth functions of q. In particular, for all the
cases studied here we have not observed any artifacts from
the use of windowing, also for the smallest wave vectors
corresponding to the width of the window function. Conse-
quently, we believe applying a smooth window function as
a preprocessing step before Fourier analysis should be an
integral part of most DDM implementations, and may also
have positive impact in other digital Fourier Microscopy
methods [16], such as near-field scattering or shadowgra-
phy. In particular, we have recently shown that windowing
can extend the wave vector range in DDM microrheology
experiments, providing a more robust determination of the
viscoelastic moduli of complex fluids [27].
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